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Enantioselective conjugate addition of dialkylzinc to cyclic enones
catalyzed by chiral binaphthyldiamine–copper(I) complexes
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Abstract—The enantioselective conjugate addition of dialkylzinc (R2Zn) to cyclic enones was examined using chiral binaphthyl-
diamine–copper(I) catalysts. Under the present reaction conditions, chiral C2-symmetric [RZn(II)]2-diamine–Cu(I) complexes were
formed from chiral binaphthyldiamine, R2Zn, and copper(I or II) chloride in situ. The reaction of 2-cyclohexenone with Et2Zn pro-
ceeded smoothly in the presence of the corresponding chiral copper(I) complex (5 mol %) and achiral 2,6-diphenylaniline
(10 mol %), and the desired Et-adduct was obtained with up to 76% ee in 95% yield.
� 2007 Elsevier Ltd. All rights reserved.
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The catalytic enantioselective conjugate addition to a,b-
unsaturated carbonyl compounds is one of the most
important methods in organic synthesis for stereoselec-
tive carbon–carbon bond formation.1 In particular, the
chiral Cu(I)-catalyzed conjugate addition of dialkylzinc
reagents to enones has been extensively investigated,
and various efficient catalysts have been developed.2

To date, several chiral P-ligands, such as phosphorami-
dites, phosphites, and phosphines, have been shown to
be highly useful.3 Chiral N,N-ligands, such as sulfona-
mides and bis(oxazoline)s, and chiral P,N-ligands have
also been shown to be effective.4 However, to the best
of our knowledge, there have been no reports of the
enantioselective conjugate addition of dialkylzinc to
enones using chiral N,N-ligands with primary amino
groups. We report here for the first time the Cu(I)-cata-
lyzed enantioselective conjugate addition of dialkylzinc
to cyclic enones using chiral binaphthyldiamine (5),
which is a simple and commercially available C2-sym-
metric ligand with primary amines.

In principal, a primary amine (R 0NH2) has a relatively
low pKa,5 and R 0NH2 can be easily replaced by
R 0NHZnR through the use of basic dialkylzinc reagents
(R2Zn) in situ. In particular, a primary aniline (ArNH2)
should be efficiently converted to the corresponding N-
ZnR-substituted compound via smooth deprotonation.
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If we can take advantage of this approach, particularly
for chiral aniline compounds toward asymmetric cata-
lysis, N-modification in advance, such as alkylation, ary-
lation, carbonylation, and sulfonation, might not always
be necessary. Therefore, we examined the catalysis of
sterically demanding chiral C2-symmetric [RZn(II)]2-
diamine–Cu(I) complexes, which would be prepared
in situ from diamine–Cu(I) complexes via the deproto-
nation of primary amino groups with R2Zn(II), in the
enantioselective conjugate addition of dialkylzinc to
enones (Fig. 1). In particular, binaphthyldiamine (5)
would be highly promising because of its low pKa as
an aniline analogue. In the expected chiral catalysis
in situ, not only N-ZnR substitutions would show a
H Zn for C=C of enone
R

Figure 1. Design of chiral diamine–Cu(I) catalysts with in situ
modifications of N-moieties.
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Table 1. Enantioselective conjugate addition of Et2Zn to 1 catalyzed
by chiral Cu(I) complexes in the presence of achiral amines
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Entry Ligand
(mol %)
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(mol %)

Yield
(%)
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1 3 [5.5] — 82 3 (S)
2 4 [5.5] — 29 3 (R)
3 5 [5.5] — 14 18 (S)
4 5 [20] — 69 72 (S)
5 3 [5.5] PhCH2NH2 [10] 52 0
6 4 [5.5] c-C6H11NH2 [10] 21 0
7 5 [5.5] 6 [30] 89 74 (S)
8 5 [5.5] 6 [10] 94 73 (S)
9 5 [5.5] 6 [5] 93 71 (S)
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Scheme 1. Enantioselective conjugate addition of n-Bu2Zn to 1.
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steric preference, but also the RZn(II) centers should act
as Lewis acid centers to activate the C@O moiety of an
enone. The RCu(I) center should also serve as a Lewis
acid center to activate the C@C moiety of an enone.
Thus, the resulting trinuclear complexes with one
Cu(I) center and two Zn(II) centers should serve as effi-
cient multi-functionalized chiral catalysts in this
reaction.6,7

First, we examined the conjugate addition of Et2Zn to 2-
cyclohexenone (1) with chiral C2-symmetric N,N-ligands
with primary amino groups, such as (S,S)-1,2-diphenyl-
ethylenediamine (3), (R,R)-1,2-cyclohexanediamine (4),
and (S)-binaphthyldiamine (5) (Table 1). In the presence
of 5 mol % of CuCl and 5.5 mol % of 3 or 4, the reac-
tions between 1 and Et2Zn (1.5 equiv) proceeded in
toluene at 0 �C for 5 h, but the enantioselectivities of
Et-adduct 2 were quite low (entries 1 and 2). The enantio-
selectivity was slightly improved (18% ee) with the use
of 5 although the yield fell to 14%. Surprisingly, how-
ever, 20 mol % of 5 triggered the reactivity, and 2 was
obtained in 69% yield with 72% ee (entry 4). Considering
these interesting results, we suspected that another path-
way would give racemic 2, but with a low yield in the
absence of adequate 5. Therefore, to prevent the
expected side pathway, we examined the effect of achiral
additives as ‘scavengers’. Compound 3 with benzyl-
amine and 4 with cyclohexaneamine were not effective,
and 2 was obtained in a racemic manner (entries 5 and
6).8 However, the addition of 10 mol % of 2,6-diphenyl-
aniline (6) to 5.5 mol % of 5 in the presence of 5 mol %
of CuCl showed a significant improvement in cata-
lytic activity, and the desired product 2 was obtained
in 94% yield with 73% ee (entry 8).9 The most appro-
priate amount of 6 was not critical, although a slight
decrease in yield or enantioselectivity was observed
when 5 or 30 mol % of 6 was used (entries 7 and 9).

Before we examined the conjugate addition of organo-
zinc reagents to other cyclic enones, we further opti-
mized the copper(I or II) precursors (Table 2). CuBr
and (CuOTf)2ÆC6H6 enhanced the catalytic activity,
although the enantioselectivities of 2 were significantly
decreased (entries 2 and 3 vs entry 1). CuCl2 in place
of CuCl also gave better reactivity, and we finally
obtained 2 in 95% yield with 76% ee at 0 �C within
1.5 h (entry 4).10 (S)-5,5 0,6,6 0,7,7 0,8,8 0-H8-Binaphthyldi-
amine (5 0) (5.5 mol %) in place of (S)-5 was also effective
to achieve higher enantioselectivity (79% ee) (entry 5).
With these optimized conditions, the addition of Et2Zn
to 2-cyclopentenone (7) and 2-cycloheptenone (9) was
examined. Although a trace amount of 3-ethylcyclo-
pentanone (8) was obtained from 1 even at room
temperature (entry 6), 3-ethylcycloheptanone (10) was
obtained in 96% yield and 65% ee (entry 7). The reaction
of 1 with n-Bu2Zn (1.5 equiv) gave the corresponding
n-Bu-adduct (11), but in a racemic manner (Scheme 1,
Eq. 1).

Interestingly, however, we found that the addition of
0.3 equiv of Et2Zn to 1.2 equiv of n-Bu2Zn in the reac-
tion of 1 with the CuCl2/5/6 catalytic system improved
the enantioselectivity of n-Bu-adduct 11 up to 58% ee
in 49% yield and also gave 2 as a minor product (22%
yield and 60% ee) (Scheme 1, Eq. 2).11,12

We should address the association between the charac-
teristics of the active Cu(I) catalysts and mechanistic as-
pects. The key to elucidating this topic should be to
clarify whether covalent bonds are present between
EtZn and N atoms via deprotonation (also see Fig. 1).
Thus, we performed stoichiometric experiments to pre-
pare the expected N-ZnEt-substituted chiral 5–Cu(I)
complexes (Scheme 2). When 1 equiv each of 5, CuCl,
and Et2Zn were mixed at room temperature, 1.03 equiv
of ethane gas was released, and the corresponding N-
ZnEt-substituted chiral Cu(I) complexes (12 and/or 13)
were formed. When another 1 equiv of Et2Zn was added
to that mixture, 0.72 equiv of ethane gas was released
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Scheme 2. Characteristics of 5–Cu(I) catalysts with Et2Zn.

Table 2. Enantioselective conjugate addition of Et2Zn to cyclic enones catalyzed by chiral (S)-5–Cu(I) complexes

+ Et2Zn

(1.5 equiv)
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(S)-5 (5.5 mol %), 6 (10 mol %)
O

n

O

n
Et

7 (n = 1)
1 (n = 2)
9 (n = 3)

  8 (n = 1)
  2 (n = 2)
10 (n = 3)

cat. Cu(I or II) (5 mol %)

Entry Enone Cu Conditions Product Yield (%) ee (%)

1 1 CuCl 0 �C, 5 h 2 94 73
2 1 CuBr 0 �C, 30 min 2 96 61
3 1 (CuOTf)2ÆC6H6 0 �C, 1.5 h 2 94 8
4 1 CuCl2 0 �C, 1.5 h 2 95 76

5a 1 CuCl2 0 �C, 1.5 h 2 78 79
6 7 CuCl2 rt, 8 h 8 Trace —
7 9 CuCl2 0 �C, 1.5 h 10 96 65

a (S)-5,50,6,6 0,7,70,8,80-H8-Binaphthyldiamine (5 0) (5.5 mol %) was used in place of (S)-5.
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again. Finally, when another 1 equiv of Et2Zn was
added to the resultant mixture, only 0.06 equiv of ethane
gas was released. Therefore, these results suggest that
the expected N-ZnEt-substituted chiral 5–CuEt complex
(i.e., 16) should be prepared via 14 and/or 15.13

Next, we turned our attention to mechanistic aspects,
including transition states as a working model. As
shown in Scheme 2, the expected active species 16 would
be generated in addition to EtZnCl from the mixture of
CuCl2 (or CuCl), 5, and Et2Zn. In the absence of 6, the
equilibrium between 16 and 14/15 is expected to shift to
the 14/15 side, where 14/15 might be less active in this
catalysis (Table 1, entry 3). However, in the presence
of achiral amine 6 as a scavenger of EtZnCl,9 the equi-
librium would be expected to shift the opposite to pro-
mote the generation of 16 as an active species (Table
1, entry 8). This is why a catalytic amount of 6 or a large
amount of 5 was necessary in this reaction (Table 1,
entries 4 and 8). Active catalytic alkylating reagent 16
shows attractive interaction with enone 4 to give the
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Figure 2. Possible catalytic cycle.
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postulated intermediate 17 before carbon–carbon bond-
formation (Fig. 2). In the transition states, si-face attack
(TS-1) should be favored to avoid steric repulsion
between substrate (1) and the N-ZnEt moiety (TS-2)
(Fig. 3). Eventually, (S)-product can be obtained with
release from the catalyst along with the regeneration
of 16 by Et2Zn.

In summary, the enantioselective conjugate addition of
dialkylzinc to cyclic enones was achieved by using chiral
binaphthyldiamine–copper(I) catalysts. Sterically less-
hindered C2-symmetric chiral binaphthyldiamine was
easily modified in two primary amino groups, and the
expected sterically demanding [RZn(II)]2-binaphthyldi-
amine–Cu(I) complexes were formed via deprotonation
by R2Zn in situ. The reaction of 2-cyclohexenone with
Et2Zn proceeded smoothly in the presence of chiral
Cu(I) catalyst (5 mol %) and achiral 2,6-diphenylaniline
(10 mol %) at 0 �C for 1.5 h, and the corresponding
Et-adduct was obtained with up to 76% ee in 95% yield.
Further studies are in progress toward other catalytic
enantioselective reactions with the modified catalysts
by organometallic reagents in situ.
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